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ABSTRACT 
 
This paper discusses the use of simulation methods in structural reliability. The main objective is 
to highlight the utility of simulation in reliability problems that are otherwise difficult or practically 
impossible to solve. To this aim, Monte Carlo simulation is used as a general tool for reliability 
analysis of structural systems with respect to the collapse. The structural problem is investigated 
by means of limit analysis. The usefulness and effectiveness of simulation are shown through the 
application to the reliability analysis of an existing arch bridge. 
  
INTRODUCTION 
 
Reliability-based concepts are nowadays widely accepted in structural design. However, before 
such concepts can be effectively applied in the context of probability theory, the design problem 
often needs to be considerably simplified. In fact, in their basic formulation reliability-based 
procedures require the structural performance to be represented by explicit relationships among 
load and resistance variables. In many practical problems, however, these relationships may be 
unknown, or available only in an implicit form. This happens for example when the reliability of 
structural systems with nonlinear behavior is investigated (Biondini et al. 2004). Moreover, since 
a complete reliability analysis includes both component-level and system-level evaluations, the 
use of analytical procedures is usually not feasible for structural systems with several components. 

Approximated numerical procedures are available for structural reliability problems that 
are otherwise difficult or practically impossible to solve by analytical methods. These procedures 
include first-order reliability methods (FORM) and second order reliability methods (SORM). In 
general, however, Monte Carlo simulation is the numerical method that has wide applicability to 
problems involving probability, and often may be the only practical means of finding a solution 
to a complex probabilistic problem (Ang and Tang 2007).  

In this paper, some issues related to the use of simulation methods in structural reliability 
are discussed. The main objective is to highlight the utility of simulation in solving reliability 
problems that may be not easily affordable by analytical methods or other numerical techniques. 
The attention is focused more on practical implementation of simulation methods in reliability 
analysis procedures, rather than on numerical tools, like variance reduction techniques, aimed to 
optimize the efficiency of simulation. To this purpose, Monte Carlo simulation in its basic form 
is used as a general tool for reliability analysis of structural systems with respect to the ultimate 
limit state of collapse. The structural problem is formulated in the context of limit analysis theory 
and solved at each simulation cycle by means of linear programming (Biondini 2000). Aspects 
concerning convergence and accuracy of the simulation process are discussed with reference to a 
simple benchmark for which the analytical solution exists. The usefulness and effectiveness of 
simulation is finally shown with the application to the reliability analysis of an existing arch bridge. 
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PROBABILITY OF FAILURE AND RELIABILITY INDEX 
 
The main objective of structural design is to assure an adequate level of safety against the limit 
state of collapse. From a deterministic point of view, a structure is safe if the value of the applied 
loads is no larger than the collapse value, or if the scalar multiplier Θ of the live loads at collapse 
satisfies the condition Θ≥1. Because of the uncertainties involved in the problem (i.e. material 
and geometrical properties, magnitude and distribution of the loads, among others), the collapse 
multiplier Θ has to be considered as a random variable and a measure of structural safety is 
realistically possible only in probabilistic terms. In particular, by denoting with θ an outcome of 
the random variable Θ, the probability of failure PF can be evaluated by the integration of the 
probability density function fΘ(θ) within the failure domain D = { θ | θ < 1}: 

∫ Θ=<Θ=
DF fPP

 
d)( )1( θθ  (1) 

However, a more convenient measure of reliability than (1–PF) is usually represented by the 
reliability index β = – Φ – 1(PF), where Φ = Φ(s) is the standard normal cumulative probability 
function. The β–index represents, in the space of the standard normal variables (zero mean values 
and unit standard deviations), the shortest distance from the origin to the limit state surface. 
 
RELIABILITY ANALYSIS 
 
The density function fΘ(θ) depends on a set of random variables X=[ X1 X2 … Xn ]T which define 
the structural problem (e.g. geometrical and mechanical properties, dead and live loads, among 
others). This dependency can be expressed in closed form only for very simple problems. 
Consider for example the beam in Figure 1.a. By assuming a perfectly plastic behavior with 
resistant bending moment Mp, the limit analysis theory gives the following collapse load multiplier: 

Fl
M p3

=Θ  (2) 

with the bending moment distribution and the plastic mechanism shown in Figure 1.b. If F and 
Mp are statistically independent lognormal random variables, and l is taken as deterministic, it 
can be shown that the distribution fΘ(θ) of the variable Θ is also lognormal (see Ang and Tang 2007). 
The statistical parameters of the lognormal random variable Θ can be computed as follows: 
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where µ is the mean value, δ = σ /µ is the coefficient of variation, σ is the standard deviation, and 
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FIGURE 1 – COLLAPSE ANALYSIS OF A BEAM. (A) STRUCTURAL MODEL. (B) BENDING MOMENT 
DIAGRAM AT COLLAPSE AND COLLAPSE MECHANISM. (C) STATISTICAL PARAMETERS. 
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the subscripts refer to the random variables F, Mp, and Θ. Based on the lognormal density 
distribution fΘ(θ), the reliability index can also be directly evaluated as follows: 
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where λΘ and ζΘ are, respectively, the mean and standard deviation of the normal random 
variable lnΘ. With reference to the statistical parameters given in Figure 1.c, and by assuming 
l=3.00 m, the results listed in Table 1 are finally obtained. It is worth noting that the nominal value 
of the collapse multiplier associated with the mean values of the variables is Θnom=2.80<µΘ. 
 

µΘ σΘ δΘ PF β 
3.05 1.03 0.338 6.3233×10−4 3.22 

TABLE 1 – STATISTICAL PARAMETERS OF THE COLLAPSE LOAD MULTIPLIER Θ, PROBABILITY 
OF FAILURE PF, AND RELIABILITY INDEX β FOR THE BEAM SHOWN IN FIGURE 1. 
 

In the presented example the reliability analysis is straightforward. However, if F and Mp are 
not statistically independent lognormal random variables, an explicit evaluation of the reliability 
index may be difficult to obtain. More in general, in practical problems the probability density 
function fΘ(θ) is usually not known, and even if this information is available the evaluation of the 
probability of failure and the corresponding reliability index can be very difficult. For specialized 
applications, one possible approach is to use approximated procedures like first-order reliability 
methods (FORM) and second order reliability methods (SORM). In general, however, a 
numerical solution is required and Monte Carlo simulation is the numerical process that has wide 
applicability to problems involving probability (see Ang and Tang 2007). 
 
MONTE CARLO SIMULATION 
 
In Monte Carlo simulation repeated analyses are carried out with random outcomes of the basic 
random variables X=[ X1 X2 … Xn ]T generated in accordance with their i=1,2,…,n marginal 
density functions fXi(xi), or the corresponding cumulative functions FXi(xi), as shown in Figure 2. 
Several procedures are available to perform this generation. For example, it can be shown that an 
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FIGURE 2 – SIMULATION OF A RANDOM OUTCOME xi OF THE RANDOM VARIABLE Xi ACCORDING 
WITH THE CUMULATIVE PROBABILITY DISTRIBUTION F=FXi(xi). 
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outcome x of a random variable X normally distributed with mean µX and standard deviation σX, 
can be obtained by using the so-called polar method  (see Ross 1997). The algorithm is as follows: 

Step 1:   Generate two random numbers u1∈[0;1] and u2∈[0;1]. 

Step 2:   Set v1=(2u1−1), v2=(2u2−1), and w=( v1
2 + v2

2). 
Step 3:   If w >1 return to Step 1. 

Step 4:   Return the unit normal 
w

wvs log2
1

−
= , or 

w
wvs log2

2
−

= . 

Step 5:   Find out the outcome  x =µX +σX s. 

If X is instead lognormally distributed, Step 5 should be replaced as follows: 

Step 5a:   Set 
X

X
X µ

σδ = ,  )1ln( 22
XX δζ += ,  and 2

2
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Step 5b:   Find out the outcome  y = lnx =λX +ζX s,  or   x = e y. 

For Step 1 recursive formulas for generating pseudorandom numbers with uniform distribution 
are available (see Ross 1997). Moreover, most programming languages have a built-in random 
number generator. It is worth noting that correlated random variables need to be transformed in 
uncorrelated variables before the algorithm above can be applied (see Haldar and Mahadevan 2000). 

With reference to the problem described in Figure 1, the simulation process can be 
performed by generating random outcomes of the lognormal random variables F and Mp, and by 
evaluating the corresponding outcomes of the random variable Θ. This sample of θ−outcomes 
can be used to build histograms approximating the probability density function fΘ(θ). Figure 3 
shows the histograms obtained at different steps N of the simulation process. These histograms 
are also compared with the lognormal exact solution. The comparison proves the high 
effectiveness of the simulation process in reproducing the actual distribution of Θ. The rate of 
convergence of the process is also highlighted in Figure 4.a, which shows the evolution of the 
computed statistical parameters of the random variable Θ for two different simulations. During 
the first cycles, the two simulations provide very different results, since each simulation process 
is different unless the same sequence of random numbers is used. However, similar and quite 
stable values are reached after about N=500 cycles, and in both cases the error in the estimation 
of the exact values of the statistical parameters becomes less than 1% after about N=1000 cycles. 

The probability of failure PF and the reliability index β can also be estimated from the 
results of the simulation process as follows: 
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where Nfail is the number of simulation cycles for which collapse occurred (Θ<1). However, if 
the distribution type of the random variable Θ is known in advance, or can be properly determined 
as shown for example in Biondini et al. (2004), more accurate estimates of the reliability index 
can be obtained by using the computed values of the statistical parameters of Θ since in this case, 
as shown in Figure 4.b, the rate of convergence is expected to be considerably higher. 

The accuracy of this approach clearly depends on the number of simulation cycles N, and 
the minimum number of experiments to achieve a certain level of accuracy depends on the  number 
of random variables involved in the problem, as well as on the value of unknown probability of 
failure (see Ang and Tang 2007). Since in structural engineering problems many variables are 
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FIGURE 3 – HISTOGRAMS OF THE PROBABILITY DENSITY DISTRIBUTION fΘ(θ) AT DIFFERENT 
STEPS OF A MONTE CARLO SIMULATION PROCESS FOR THE BEAM SHOWN IN FIGURE 1. THE 
HISTOGRAMS ARE COMPARED WITH THE LOGNORMAL EXACT SOLUTION OF THE PROBLEM. 

 
 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 10 100 1000 10000 100000 1000000

Number of Cycles N

St
at

is
tic

al
 P

ar
am

et
er

s 
µ θ

 , 
σ

θ
 

Mean µ

 Standard Deviation σ

2

  1

  
        1

            2 

2.60

2.80

3.00

3.20

3.40

3.60

3.80

4.00

1 10 100 1000 10000 100000 1000000

Number of Cycles N

R
el

ia
bi

lit
y 

In
de

x 
β

Θ

Θ

ζ
λ









−Φ−

N
N fail11

 
FIGURE 4 – EVOLUTION OF THE SIMULATION PROCESS FOR THE BEAM SHOWN IN FIGURE 1. 
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often involved and very small values of probability of failure are accepted (10−9÷10−5), in 
practice the number of required simulation cycles can be considerably high. With advancements 
in computer technology the time required to perform a very large number of simulations may 
become a problem only if the deterministic analysis for each simulation is computationally 
intensive. In any case, several variance reduction techniques are available to reduce the sampling 
error and, consequently, the number of cycles required to obtain a given accuracy (see Ross 1997). 
 
RELIABILITY ANALYSIS OF AN ARCH BRIDGE 
 
The structural reliability of the existing reinforced arch bridge over the Corace river in Italy is 
investigated. To this aim, a general approach to limit analysis considering axial force and bending 
moment as active and interacting generalized plastic stresses is applied (Biondini 2000). In this 
procedure, based on a stepwise approximation of the axial-force interaction curves, the complete 
solution of the limit analysis problem, i.e. the collapse load, a stress distribution at incipient 
collapse, and a collapse mechanism, is obtained  by means of linear programming. 

The structural model of the bridge is based on the data presented in Galli and Franciosi 
(1955). The structural scheme and the overall dimensions of the bridge are shown in Figure 5. 
The arch has uniform cross-section with the axial force-bending moment interaction curve shown 
in Figure 6.a. This curve is approximated by a four-side stepwise linearization, for the sake of 
safety inscribed within the resistant domain, as shown in the same Figure 6.a. For the stiffening 
girder, axially unloaded, the distribution of the resistant bending moments is shown in Figure 6.b. 
The five supporting walls, simply compressed, are assumed as not critical with respect to collapse. 
The structure is subjected to a set of dead loads g and to a live load p, as shown in Figure 5. In 
the limit analysis these distributed loads are replaced by statically equivalent concentrated loads, 
12 for each span of the girder and 6 for each span of the arch. Additional details on this structural 
model can be found in Biondini and Frangopol (2008), where the life-cycle performance of the 
arch bridge subject to environmental damage is investigated. 

All data given in Figures 5 and 6 are assumed as nominal values. The limit analysis for the 
nominal scenario provides a collapse multiplier Θnom = 4.28. Figure 7 shows a possible collapse 
mechanism, together with a possible distribution of axial force and bending moment at collapse. 

The probabilistic analysis is carried out by considering the following random variables: 
(a) The location (x, y) of the nodal connections of the structural model (i.e. the ends of each arch 
segment, and the ends of each girder segment having different properties); (b) The distance k of 
each side of the resistance curve from the origin, for each structural member, in the hypothesis 
that the shape of the resistance domains is not affected by significant randomness; (c) The 
magnitude of dead loads g and live loads p acting in each span of both the arch and the girder. 
The distribution types and statistical parameters assumed for these variables are listed in Table 2. 
To emphasize the effects of the uncertainties, no correlation is considered among these variables.  

Figure 8.a shows the histogram of the probability density function fΘ(θ) obtained after 
N = 106 simulation cycles. Based on the results of chi-square and Kolmogorov-Smirnov tests for 
goodness-of-fit (see Ang and Tang 2007), a lognormal distribution is selected as a very appropriate 
model for fΘ(θ). This model is included in Figure 8.a, where the goodness-of-fit of the lognormal 
distribution can be verified visually as well. The rate of convergence of the computed statistical 
parameters is shown in Figure 8.b. The best estimates obtained for these parameters are µΘ=4.04, 
σΘ=0.74, and δΘ=σΘ/µΘ =0.183. A reliability index β =7.62 is obtained from the lognormal model. 
Since this value corresponds to a probability of failure PF ≈10−14, at least N=1014 simulation 
cycles would be required, on average, to find an outcome θ <1. As a consequence, in this case 
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FIGURE 5 – ARCH BRIDGE. OVERALL DIMENSIONS AND LOADS (NOMINAL SCENARIO). 
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FIGURE 6 – ARCH BRIDGE. (A) AXIAL FORCE-BENDING MOMENT RESISTANT DOMAIN FOR THE 
ARCH. (B) DISTRIBUTION OF THE RESISTANT BENDING MOMENTS IN THE GIRDER. 

   

 
FIGURE 7 – ARCH BRIDGE. RESULTS OF LIMIT ANALYSIS FOR THE NOMINAL SCENARIO (Θnom=4.28). 
(A) AXIAL FORCE AND (B) BENDING MOMENT DIAGRAMS AT COLLAPSE. (C) COLLAPSE MECHANISM. 
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p Normal pnom 0.40 pnom 

TABLE 2 – ARCH BRIDGE. DISTRIBUTION TYPES AND STATISTICAL PARAMETERS. 
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FIGURE 8 – ARCH BRIDGE. RESULTS OF THE SIMULATION PROCESS AFTER N=106 CYCLES: 
(A) HISTOGRAM OF THE DENSITY FUNCTION fΘ(θ) COMPARED WITH A LOGNORMAL DISTRIBUTION 
MODEL, AND (B) STATISTICAL PARAMETERS OF THE COLLAPSE LOAD MULTIPLIER Θ. 

 
the number Nfail cannot be used to obtain reliable estimates of β, unless a very high number of 
simulation cycles is carried out (e.g. N >1016÷1017). This confirms the crucial role played by a 
proper selection of the distribution type for the random variables under investigation. However, 
when a distribution suitable to fit the sample data is not available, variance reduction techniques 
can be applied to reduce the number of required simulation cycles. 
 
CONCLUSIONS 
 
The usefulness and effectiveness of simulation methods in reliability problems involving structural 
systems with several components and implicit relationships among load and resistance variables, 
have been shown with reference to the probabilistic limit analysis of an existing arch bridge. The 
results of the simulation process, in terms of reliability estimates, highlighted the crucial role 
played by a proper selection of the distribution type for the random variables under investigation. 
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